Développement - Polyestertime La nouvelle technologie de Novozymes propose le blanchiment à froid aux denim manufactures 5. Novembre 201 4 Diverses visions denim peuvent être obtenues avec la dernière innovation enzymatique. Travailler avec de l'eau froide et réduire l'utilisation des produits chimiques, la solution accélère le processus de blanchiment denim, et assure un denim de meilleure qualité. Il y a près de 20 ans, le blanchiment denim est devenu plus sûr et plus durable avec le lancement de Novozymes DeniLite. Utilisant la technologie enzymatique au lieu des produits chimiques durs, la solution a offert une alternative douce pour le traitement de denim. La nouvelle offre de Novozymes est un produit de blanchiment à froid dénommé DeniLite Cold. Traitement froid, doux et rapide Notre solution de blanchiment à froid est efficace à la température de l'eau du robinet, déclare Ole Bill Jrgensen, responsable du développement commercial de la division Textile de Novozymes. D'autres technologies de blanchiment nécessitent l'utilisation de plus d'énergie ou d'eau, et dans certains cas plus étapes de processus, pour obtenir le même effet de blanchiment. Les solutions de blanchiment enzymatiques qui sont actuellement disponibles sont habituellement basées sur des enzymes connues sous le nom de laccases. Ils modifient l'indigo par oxydation. Selon l'oxygène de l'eau ou de l'air, cette forme de blanchiment denim peut prendre beaucoup de temps, et l'étape de traitement peut nécessiter une répétition. La nouvelle solution de blanchiment à froid est basée sur des enzymes connues sous le nom de peroxydases, et cette innovation est formulée pour fonctionner sans oxygène supplémentaire de l'air ou de l'eau. Cette nouvelle peroxydase a une vitesse de réaction très rapide - 90% de la réaction se termine en 10 minutes. La technologie de blanchiment à froid assure également une meilleure durabilité du tissu en raison des conditions de blanchiment doux. Les solutions enzymatiques sont extrêmement spécifiques, travaillant uniquement sur le colorant indigo sur le tissu. Contrairement aux produits chimiques de blanchiment plus durs, cela signifie que la résistance et l'élasticité du tissu reste inchangée. Les tissus sont souvent colorés à l'aide de colorants indigo et soufre. La solution de blanchiment à froid est très efficace lorsqu'il est utilisé avec des colorants indigo. Il ne blanchit pas les colorants de soufre noirs ou bruns, et ne modifie que légèrement le ton bleu de soufre. Cela signifie que différentes teintes peuvent être obtenues avec le même tissu en utilisant différentes combinaisons de colorants. Les nuances de tissus finis à froid peuvent être très différentes de celles finies avec des produits chimiques traditionnels. La solution de blanchiment à froid de Novozymes peut permettre d'obtenir des looks de mode en demande, déclare Ole Bill Jrgensen. Denim processeurs peuvent appliquer cette technologie aux tendances actuelles et créer divers regards pour les propriétaires de marque très rapidement. Même un seul cycle de lavage utilisant cette technologie peut créer une variété de tons de couleurs différentes. Nous croyons que le plein potentiel de la mode sera encore exploré lorsque la technologie deviendra largement accessible à l'industrie. Teijin Ltd. Teijin développe de nouveaux retardateurs de flamme de phosphore Teijin 30 septembre 2013 Tokyo, Japon, 27 septembre 2013 --- Teijin Limited a annoncé aujourd'hui qu'elle a développé un nouveau retardateur de flamme de phosphore, FireguardFCX-210, utilisable pour une large gamme de résines. Avec sa gamme désormais améliorée de retardateurs de flamme bromés, la société prévoit de développer des applications avec un accent particulier sur les marchés de l'électronique et de l'automobile. Le nouveau FireguardFCX-210 est un nouveau type de retardateur de flamme au phosphore, développé à l'aide de la technologie exclusive de conception moléculaire de Teijins, qui confère une grande résistance à la flamme à une large gamme de plastiques largement utilisés Dans le matériel de bureau, les appareils électroniques, les consoles de jeux et les automobiles. Ceux-ci comprennent des résines de styrène telles que l'ABS et le polystyrène et des résines de polyamide telles que le nylon, avec lesquelles les ignifugeants de phosphore classiques sont moins efficaces. L'ajout d'agents ignifuges de phosphore classiques aux résines réduit généralement leur efficacité. Mais FireguardFCX-210 ne perd rien de sa résistance à la flamme et peut être ajouté sans changer les caractéristiques originales de la résine. De plus, seule une quantité relativement faible est nécessaire. Avec un polystyrène à haut impact, par exemple, la quantité nécessaire d'ignifuge est réduite d'environ 40. FireguardFCX-210 est également un produit sans halogène, ce qui le rend plus sûr pour les utilisateurs finaux et plus respectueux de l'environnement. En plus des améliorations rapides de la performance des équipements de bureau, des appareils électroniques et des automobiles, les consommateurs s'attendent à des produits plus sûrs et respectueux de l'environnement. Les retardateurs de flamme - additifs qui rendent les matériaux inflammables, tels que les plastiques, difficiles à brûler - sont largement utilisés pour y parvenir. Les retardateurs de flamme au phosphore sont un type clé de retardateur et très efficace en particulier lorsqu'ils sont ajoutés aux résines de polycarbonate et de polyester. FireguardFCX-210 répond à la forte demande des clients pour le développement d'ignifuge qui peut également être appliquée à d'autres types de résine et ne réduit pas La résistance à la chaleur des matériaux sur lesquels il est utilisé. Le groupe Teijin développe également des applications et des méthodes de traitement pour la protection contre le feu CFX-210 en utilisant d'autres matériaux Teijin. À propos du groupe Teijin Teijin (TSE 3401) est un groupe mondial axé sur la technologie qui propose des solutions avancées dans les domaines du transport durable, de l'information et de l'électronique, de la sécurité et de la protection, de l'environnement et de l'énergie et des soins de santé. Ses principaux domaines de fonctionnement sont les fibres à hautes performances telles que l'aramide, les fibres de carbone et les composites, les soins de santé, les films, la résine et le traitement des plastiques, les fibres de polyester, la transformation des produits et l'informatique. Le groupe compte quelque 150 entreprises et environ 17 000 employés répartis dans plus de 20 pays dans le monde. Elle a enregistré un chiffre d'affaires consolidé de 745,7 milliards JPY (7,4 milliards USD) et un actif total de 762,4 milliards JPY (7,6 milliards USD) au cours de l'exercice se terminant le 31 mars 2013. Presse Contact Communications corporatives Teijin Limited 81 3 3506 4055 prteijin. co. jp Groupe Aquafil recyclant les filets de pêche et de pisciculture d'occasion Publié par admin Mars 27,2013 Un concept de durabilité: Recyclage de matériaux de filet en fin de vie Une technologie de recyclage avancée aide à recycler les filets de polyamide 6 usés dans les tapis et les vêtements. Le groupe Aquafil se spécialise principalement dans la production, la commercialisation et la fourniture de fils et de polymères synthétiques en nylon 6. L'entreprise a mis l'accent sur l'application des principes de durabilité de deux façons. Le premier concerne le développement de nouveaux produits durables à partir de sources de matières premières recyclées avec des activités de co-marketing avec des clients et des fournisseurs. Le second est l'utilisation d'un faible impact environnemental ou d'énergies renouvelables pendant la production. Le Groupe emploie plus de 1 900 personnes et est présent sur trois continents: Europe, Amérique du Nord et Asie. En Europe, elle compte cinq sites de production en Italie, trois en Slovénie et un en Croatie. L'installation nord-américaine se trouve à Cartersville, en Géorgie, aux États-Unis. En Asie, il existe une installation en Thaïlande et une nouvelle installation de production 2011 a ouvert en Chine, situé dans la ville de Jiaxing, près de Shanghai. La mission Aquafil est de générer un cycle en boucle fermée de produits durables en polyamide 6. Ce faisant, le groupe a également découvert un large éventail de produits en fin de vie utilisables à cette fin, tels que les filets à poisson (filets à cage pour pisciculture, filets maillants, filets de pêche au chalut et à senne coulissante). Ceci est possible grâce à une technologie de recyclage avancée. La récupération des filets épuisés en polyamide 6 évite également les problèmes environnementaux des plans d'eau, des océans et des plages, à partir de matériaux de filets fantômes égarés ou abandonnés. Le groupe exploite une nouvelle usine de recyclage post-consommation en Slovénie. Polyamide recyclé (également connu sous le nom de Nylon) La teneur en polyamide recyclé est appelée Econyl. Avec ce projet, Aquafil atteint la pleine durabilité dans son processus de production tout en surmontant les problèmes associés à la réglementation sur l'élimination des déchets. À la fin de leur vie utile, ces produits usés sont le plus souvent remplis de terre ou stockés à perpétuité. Ces deux facteurs ont un impact négatif sur l'environnement et un obstacle éventuel à la croissance de l'industrie. Dans certains cas, les filets sont incinérés, dans les meilleurs cas pour récupération de carburant ou d'énergie. Plus important encore, le recyclage en boucle fermée de ces matériaux, en fin de vie utile, déplace directement et réduit la consommation de ressources naturelles, aussi bien sous forme de matières premières dérivées du pétrole brut que de l'électricité, de l'énergie thermique et des services publics obtenus en général Fossiles. Ce projet Econyl est le chemin d'Aquafils vers la pleine durabilité dans son processus de production. L'entreprise affirme que c'est l'un des systèmes de recyclage écologiques les plus complets. Il commence par les résidus de déchets de polyamide 6 post-consommation et se termine avec des fils qui sont faites en carpetingapparel, le renvoyer à la qualité de qualité vierge et les possibilités de couleurs brillantes Aquafil est bien connu pour, le tout dans un cycle continu. Cependant, tous ces processus seront plus prometteurs avec la collaboration de clients, d'associations et de groupes qui aideront à récupérer les biens de fin de vie nécessaires à la fermeture de la boucle de récupération-recyclage et de réutilisation. Aquafil fait la promotion d'une méthodologie de développement de produits Econyl pour la conception durable afin que ses clients puissent mieux défendre la responsabilité et la gérance de la fin de vie des produits. Pour l'aquaculture, cela implique de concevoir des produits à la pointe de la vie à l'esprit en utilisant des filets et des cordes à base de polyamide 6 tout en minimisant les autres polymères dans la construction nette à l'avenir. Souvenez-vous que la fin de la gestion de la vie nette commence lorsque vous achetez vos matériaux de construction ou prenez la décision d'achat. L'industrie de la pêche et de l'aquaculture peut appuyer cette initiative de durabilité en fournissant des matériaux de compensation en fin de vie. Aquafil sollicite l'aide des membres de l'industrie, des intervenants, des associations et des organismes gouvernementaux pour identifier les sources possibles. Il prendra également des mesures de compensation et de transport. Pour ceux qui sont intéressés, veuillez contacter: Pour le Canada, l'Amérique du Nord et l'Amérique du Sud Jim Lindsey Aquafil USA 1 Aquafil Drive Cartersville, GA 30120 bureau USA: 678-605-8149 cell: 678-848-3416 Email: jim. lindseyaquafil Europe et Asie Ladislao Labriola Aquafil SPA Via Linfano 9 38062 Arco (TN) Italie bureau: 39 0464 581105 cellulaire: 39 348 3115102 E-mail. Ladislao. Labriolaaquafil Les chercheurs développent une méthode rapide pour mesurer les empreintes carbone 30 octobre 2012 Les chercheurs ont développé un nouveau logiciel qui permet de calculer rapidement les empreintes carbone de milliers de produits simultanément, un processus qui a pris beaucoup de temps Et coûteux. Une nouvelle méthodologie permet aux entreprises de déterminer les empreintes carbone. La méthodologie devrait aider les entreprises à étiqueter avec précision les produits et à concevoir des moyens de réduire leurs impacts environnementaux, a déclaré Christoph Meinrenken, le chef de projet et chercheur associé à Columbia Universitys Earth Institute et Columbia Engineering. Une nouvelle étude, publiée en ligne dans le Journal of Industrial Ecology, décrit la méthodologie. Le projet est le résultat d'une collaboration entre les instituts Lenfest Centre pour l'énergie durable et PepsiCo, Inc. Son objectif initial était d'évaluer et d'aider à normaliser PepsiCos calculs de la quantité de dioxyde de carbone émis quand un produit est fabriqué, emballé, distribué et éliminé . Lancé en 2007, il a abouti au premier label d'empreinte carbone des États-Unis, certifié par un tiers impartial, pour le jus d'orange Tropicana. PepsiCo a mis à l'essai la méthodologie pour d'autres utilisations depuis 2011. Meinrenken et son équipe ont utilisé une base de données d'analyse du cycle de vie - un outil utilisé pour évaluer l'impact environnemental d'un produit - qui couvrait 1 137 produits PepsiCo. Ils ont ensuite développé trois nouvelles techniques qui fonctionnent ensemble, leur permettant de calculer des milliers d'empreintes en quelques minutes, avec un minimum d'utilisateurs. L'élément clé était un modèle qui génère des facteurs d'émission estimés pour les matériaux, éliminant la cartographie manuelle des ingrédients d'un produit et des matériaux d'emballage. Meinrenken a déclaré que les facteurs générés automatiquement permettent aux non-experts de calculer les empreintes carbone approximatives et d'alléger les contraintes de ressources pour les entreprises qui se lancent dans l'empreinte carbone à grande échelle du produit. Il a dit que le logiciel est conforme aux directives commanditées par l'Institut à but non lucratif World Resources Institute, qui fournit des normes contre lesquelles les empreintes carbone peuvent être auditées. Jusqu'à présent, l'analyse du cycle de vie a surtout été effectuée un produit à la fois. Cela impose de grandes exigences pour le personnel, l'expertise et le temps, et peu d'entreprises ont suffisamment d'employés possédant une expertise spécialisée. Meinrenken a déclaré que certains ont essayé de surmonter ce goulet d'étranglement en revenant à des données agrégées et des calculs, mais ils manquent généralement sur le niveau microscopique de détail qu'une analyse appropriée exige. L'approche des chercheurs a été inspirée par des champs en dehors de la science de l'environnement, Meinrenken dit. Dans des entreprises comme Facebook ou Netflix, les ingénieurs utilisent la magie statistique pour exploiter de vastes ensembles de données et enseignent essentiellement aux ordinateurs pour prédire, par exemple, qui aimera un film particulier, at-il dit. Il a utilisé des méthodes similaires pour extraire des données détaillées sur les produits et la chaîne d'approvisionnement. Pour un ingénieur de l'environnement, l'utilisation de telles données pour estimer combien l'environnement sera comme certains produits et services est particulièrement gratifiant, at-il dit. Les consommateurs seront en mesure de faire des choix plus éclairés. L'information peut également aider les entreprises à concevoir et à évaluer les façons de réduire les impacts des produits, at-il dit. Al Halvorsen, directeur senior de la durabilité chez PepsiCo, a déclaré: «Ce nouveau logiciel promet non seulement de gagner du temps et de l'argent pour des entreprises comme PepsiCo, mais aussi de fournir de nouvelles idées sur la façon dont les entreprises mesurer, gérer et réduire leur empreinte carbone à l'avenir . Klaus Lackner, directeur du Centre Lenfest pour l'énergie durable, a déclaré: «L'empreinte carbone rapide est un excellent exemple de la façon dont les méthodologies académiques couplé avec des outils modernes de traitement de données et statistiques peuvent être mis à la vie et déverrouiller leur pouvoir dans le monde réel. L'équipe de Meinrenkens envisage maintenant de transférer la méthodologie du carbone à d'autres domaines, comme l'utilisation de l'eau. Source: The Earth Institute de l'université Columbia UMass, Delaware chercheurs de développer processus à faible coût pour faire du plastique à partir de plantes 17 mai 2012 Par Stan Freeman Une équipe dirigée par un ingénieur chimiste de l'Université du Massachusetts a développé un faible coût, le processus à haut rendement Pour faire l'un des plastiques les plus communs utilisant la matière végétale plutôt que le pétrole. Le nouveau procédé produit du polyéthylène téréphtalate, ou PET, qui est largement utilisé dans les bouteilles de soude et d'eau, ainsi que dans les tissus synthétiques comme le polyester. Paul Dauenhauer, professeur adjoint en génie chimique, a dirigé l'équipe de chercheurs de l'UMass et de l'Université de Montréal. Delaware. Leurs résultats ont été publiés récemment dans la revue ACS Catalysis. Les consommateurs connaissent les plastiques PET par l'étiquette triangulaire de recyclage 1 sur les récipients en plastique. Les plastiques PET sont fabriqués avec un produit chimique, le p-xylène, qui est traditionnellement dérivé du pétrole. Le nouveau procédé transforme le glucose, un sucre simple dérivé de plantes comme les graminées et les arbres, en p-xylène. Bien que d'autres procédés existent pour produire du p-xylène à partir de biomasse, aucun n'est aussi peu coûteux ou aussi efficace que le nouveau procédé, a déclaré M. Dauenhauer. Une analyse complète des coûts et de la conception des processus est encore un à deux ans, parce que nous venons de faire la découverte scientifique, at-il dit. Cependant, notre processus présente des avantages considérables par rapport aux technologies concurrentes. Par exemple, notre procédé peut atteindre un rendement de 75 p. 100 de p-xylène, alors que les technologies concurrentes n'atteignent que des rendements inférieurs à 20 pour cent. Cela signifie que nous pouvons potentiellement faire plus de trois fois la quantité de plastiques dérivés de la biomasse à partir d'une tonne de biomasse par rapport à nos concurrents. Notre découverte montre un potentiel remarquable pour les plastiques verts, a déclaré Dionisios G. Vlachos, un professeur de génie chimique à l'Université du Delaware qui faisait partie de l'équipe. Cette technologie pourrait réduire considérablement les coûts de production pour les fabricants de matières plastiques à partir de sources renouvelables. Dauenhauer a déclaré que le plan des équipes est d'autoriser le processus aux entreprises, et que UMass serait partager les redevances. En plus de Dauenhauer et de Vlachos, l'équipe de recherche comprenait le professeur Wei Fan d'UMass et les doctorants UMass en génie chimique, C. Luke Williams et Chun-Chih Chang. Les professeurs de l'université du Delaware, Raul F. Lobo et Stavros Caratzoulas, ainsi que l'étudiante au doctorat Nima Nikbin, et l'étudiant postdoctoral Phuong Do. font également partie de l'équipe. Une grande partie du financement de leur recherche provient du ministère américain de l'Énergie. La modification des fibres de PET pour améliorer la coloration, la teinture différentielle, les propriétés antibactériennes, l'inflammabilité réduite, l'absorption d'eau élevée et les propriétés mécaniques sont essentielles pour surmonter les inconvénients, souligne Aravin Prince P. Les polyesters sont des polymères fabriqués par Une réaction de condensation se produisant entre de petites molécules, dans lesquelles la liaison des molécules se produit par la formation de groupes esters. Les polyesters sont généralement fabriqués par interaction d'un acide dibasique avec un alcool dihydrique. Cette fibre est une fibre de poids moyen avec une densité de 1,39 gcm3. Comparativement au nylon, les polyesters sont des fibres plutôt lourdes. Pour cette raison, les matières textiles en polyester sont fabriquées sous forme de tissus légers ou minces. Le filament de polyester le plus courant ou la fibre stable est habituellement composé de polymères de polyéthylène téréphtalate (PET). Pourquoi les polyesters modifiés sont préparés Les polyesters modifiés sont préparés pour surmonter certains inconvénients tels que la récupération d'humidité faible, l'électricité statique et les problèmes de salissures, ces trois inconvénients sont liés et associés à l'hydrophobicité du polyester. En rendant hydrophiles, ces inconvénients peuvent être surmontés. Ainsi, une fibre hydrophile aura une récupération d'humidité plus élevée. Les vêtements constitués de fibres hydrophiles absorberont la transpiration et seront confortables. D'autres inconvénients sont pilling problème et difficulté extrême dans la teinture. Les fibres à pilling faible sont nécessaires pour conserver l'aspect élégant des vêtements en polyester pendant une longue période. Ces fibres à pilling faible ont une ténacité inférieure à celle des fibres de polyester normales. Ainsi, bien que des pilules soient formées dans ces tissus, ces pilules sont enlevées par simple brossage ou lavage. Modification des fibres de polyester Les fibres de polyester étaient retardataires parmi les fibres manufacturées et devaient se retrouver dans un marché où les fibres de polyamide et d'acrylique étaient déjà établies. Les fibres de polyester utilisées pour l'application textile offrent des avantages tangibles aux transformateurs et aux consommateurs. Des fibres de faible denier mélangées avec du coton ont donné des résistances plus élevées à des niveaux de torsion plus faibles que celles trouvées dans 100 fils de coton. La propriété caractéristique du polyester a été immédiatement encashed par les concepteurs de chemise et de tissus de blouse. Les fibres de polyester assurent aux textiles une stabilité dimensionnelle, une résistance à l'usure et des propriétés de soin faciles, la poignée, le drapé et l'aspect étant conservés plus longtemps que dans les tissus faits de fibres naturelles. Le taux élevé de croissance des fibres de polyester est dû à leurs propriétés physiques exceptionnelles, à leur résistance chimique, à leurs propriétés faciles et à leur résistance à la moisissure, à la moisissure et au microorganisme. En dépit de ses performances remarquables, il existe certaines lacunes dans le PET, par exemple: Nature hydrophobe. Facilité de salissure. Accumulation de charge statique. Tendance à la pilule. Manque de sites récepteurs de colorant dans la chaîne polymère. Des recherches approfondies ont donc été menées sur le PET pour surmonter les inconvénients mentionnés ci-dessus. De tels changements (physiques et chimiques) ont conduit à la fabrication de fibres de polyester modifiées. La modification du polyester normal a été accomplie par les voies suivantes: changement de la composition chimique de la molécule de PET par introduction d'un troisième et / ou quatrième composant dans la chaîne polymère pendant la polymérisation. Utilisation de certains additifs (charges particulaires, pigments de polymères) dans la phase de fusion avant l'extrusion. Modification pendant le filage à l'état fondu tel que le profil creux varié et les fibres micro-denier pour des applications spécifiques. Modification de surface de la fibre de polyester normale pour produire des effets spécifiques. Modifications pour améliorer la teinture Pendant la teinture, les colorants diffusent dans la fibre et sont absorbés principalement par les régions amorphes. Le coefficient thermique de la mobilité moléculaire, responsable de la diffusion du colorant, dépend en grande partie de la Tg, qui augmente avec l'augmentation de la cristallinité et le degré d'orientation de la fibre. Il a été démontré que l'étirage et le durcissement provoquent une réduction significative de la vitesse d'absorption du colorant, qui peut cependant être améliorée en introduisant certains co-monomères hydrophiles dans la molécule de PET. PET (DD-PET): La modification du polymère pour réduire la température de transition vitreuse (Tg) est utile pour augmenter la vitesse de teinture. Les co-monomères les plus efficaces sont de nature aliphatique. Le remplacement d'une petite proportion de motifs téréphtaloyle par un acide dicarboxylique aliphatique tel que l'acide glutarique ou adipique, habituellement 5 à 10 mo1, produit des fibres qui colorent à l'ébullition sans supports. Les unités aromatiques, dérivées par exemple de l'acide isophtalique, agissent principalement par réduction Cristallinité, sont moins efficaces. Puisqu'à une première approximation, la dépression de la température de fusion lors de la copolymérisation est proportionnelle au pourcentage molaire du modificateur, une unité comonomère flexible de poids moléculaire élevé est particulièrement utile. Fibres de poly (ester-éther): Les copolymères séquencés fabriqués à partir de PET et de polyalkylèneglycols, c'est-à-dire de polyéthylène ou de polypropylèneglycols ayant une masse moléculaire de Mn 1000-3000 ont montré une bonne aptitude à la teinture avec des colorants dispersés. Des nuances profondes peuvent être obtenues dans un bain bouillant sans supports. Des co-polyesters séquences contenant des segments PEO d'oxyde de polyéthylène et de PET ont été synthétisés en présence d'oxyde de plomb et de catalyseurs à base de Mn, Sb, Sn ou Mg. Poly (ester-b-éther) en incorporant des blocs éther (PEG-1000) dans le squelette PET. Les fibres de copolymère de polyester fabriquées à partir d'un mélange d'éthylène glycol, de diéthylène glycol et de diméthylterephtalate ont montré une aptitude à la teinture améliorée et se révèlent utiles comme fibres de liant dans des bâtons de fibres pour sacs de couchage et vestes de ciel. Cependant, les fibres fabriquées à partir de ces copolymères présentent l'inconvénient d'être très sensibles à la réaction de dégradation thermique, hydrolytique et photochimique. Les caractéristiques de la teinture profonde PET sont: Meilleure teinture (pour les colorants dispersés). Temps de teinture plus court. Le débit de filage a augmenté de 5%. Une prise d'eau plus élevée (0,8 contre 0,4 en PET non modifié). Tissu agréable à la main et doux des tissus. Polyester colorant libre de support (CFDP): Les polyesters pouvant être colorés sans support sont définis comme étant des polyesters dont la capacité de teinture à l'ébullition sans utilisation de supports est similaire à celle des fibres de polyester teintes dans des conditions HTHP ou à ébullition en présence de supports. Il existe deux approches pour la production de CFDP. V Modification physique des fibres Les propriétés de teinture du polyester sont fortement influencées par un grand nombre des conditions de traitement auxquelles elles peuvent être soumises pendant la fabrication ou pendant le traitement ultérieur du textile. Des efforts ont été réalisés pour améliorer la capacité de teinture du polyester, pour produire du CFDP en effectuant certains changements dans les opérations de filage à chaud, d'étirage et de thermofixage. La texturation de l'air et le mélange des filaments ont également été utilisés pour produire toute une variété de produits. Mais la technique la plus importante à portée de main est la texturation par tirage d'un fil partiellement orienté (POY). Modification chimique du polymère Le CFDP chimiquement modifié est produit en ajoutant certains additifs - polyéthylèneglycol (PEG), acide adipique acide azillique - qui forment des copolymères blocs avec du polyester. Plusieurs propriétés sont revendiquées pour la fibre, y compris une bonne aptitude à la teinture à 100 ° C, les propriétés physiques et la résistance à la traction sont comparables avec le polyester normal. La température de transition vitreuse de toutes ces fibres est d'environ 10 ° C, inférieure à celle du polyester normal, ce qui conduit à une mobilité segmentaire plus élevée. Ceci, à son tour, augmente la vitesse de diffusion du colorant en fibres à une température plus basse et peut être coloré en nuances profondes à l'ébullition même en l'absence de porteurs. Ces fibres offrent les avantages suivants par rapport au polyester normal: Meilleur épuisement dans des conditions atmosphériques. Rendement de couleur plus élevé. Cycle de teinture plus court. Réduction des coûts de teinture. Élimination du coût du transporteur. Économie d'énergie. Protection de l'environnement, c'est-à-dire avantages écologiques. Possibilités de teinture de PESwool de mélanges PESacryliques. Réduction du problème des oligomères lors de la teinture. (PET-b-PEG) CFDP: La méthode la plus simple et la plus courante de fabrication de polyester modifié est l'incorporation d'un agent modificateur lors de la transestérification, de la polycondensation ou lors du mélange en fusion. En considérant la nature du bloc à introduire dans la molécule, on peut adopter le critère suivant: Le bloc doit contenir des groupes chimiques de nature hydrophile pour aider au gonflement de la fibre en solution aqueuse. L'intermédiaire fibreux formant le bloc doit avoir des groupes terminaux réactifs tels que carboxyle ou hydroxyle, capables de subir une polycondensation. Il doit être thermiquement stable à 275-280 ° C pour résister aux conditions de filage à l'état fondu du polymère. Il doit être chimiquement stable dans ces conditions. Les conditions ci-dessus limitent le choix de la composante modificatrice, mais des peu disponibles, les polyesters sont les plus intéressants. Ainsi, les modificateurs les plus populaires aujourd'hui sont une gamme de polyéthylèneglycols de formule générale H (OCH2CH2) nOH. Les polyéthylèneglycols remplissent les quatre conditions énoncées ci-dessus et présentent également très peu de dispersion dans le poids moléculaire. Problèmes de CFDP: Polyester teintable sans support est associé à de nombreux problèmes. Certains d'entre eux sont énumérés ci-dessous: Niveau de teinture: En raison du taux extrêmement élevé d'épuisement des colorants, il ya un problème d'absorption localisée des colorants dans les zones frontières entre la surface de la fibre et la liqueur de teinture, ce qui conduit à la teinture irrégulière. Ceci peut être corrigé en maintenant un gradient de concentration uniforme entre la fibre et le bain de teinture, à tous les points de la fibre, ce qui peut être obtenu par une circulation rapide de la liqueur de colorant ou une vitesse élevée du tissu. Résistance à la lumière des tissus teints: On constate que les colorants sur le polyester colorant sans support sont plus photosensibles que sur les fibres normales. Kuster et Herlinger ont étudié ce problème et suggéré l'utilisation de stabilisants qui rendent leur épuisement du bain de teinture possible. Ces composés refroidissent les radicaux primaires. La solidité de lavage de la teinture: La solidité de lavage de la teinture est également légèrement faible pour ces fibres en raison de la structure de fibre, les molécules de colorant ne sont pas piégées efficacement dans la structure de fibre. En d'autres termes, les facteurs qui augmentent la diffusion dans la fibre augmenteront également la diffusion hors de celle-ci, lorsque les gradients de concentration sont inversés. Ainsi, des instructions appropriées devraient être données aux consommateurs pour laver les produits CFDP à des températures inférieures à 50 ° C. Polyester colorant cationique (CD-PET) Dans le polyester normalement colorable, il n'y a pas de sites pour les colorants ioniques. Ainsi, il ne peut être teint que par des colorants dispersés. Par rapport aux colorants ioniques, les colorants dispersés ont des coefficients d'extinction moléculaire plus petits et une propriété d'accumulation plus faible. Donc, ces colorants ne peuvent pas donner des couleurs vives et profondes. De plus, la solidité à la sublimation et les traitements humides des colorants dispersés sont relativement médiocres par rapport à d'autres classes de colorants. Afin d'éviter ces problèmes, on a développé du polyester cationique cationisable. Fabrication de CD-PET: La copolymérisation d'un composant d'acide isophtalique contenant un groupe acide sulfonique permet d'utiliser des colorants cationiques pour fibres discontinues de polyester et filaments. Généralement, le sel de sodium de l'acide 5-sulfo-isophtalique (Na-SIPA) est utilisé comme co-monomère CD. Un colorant cationique ou basique contient des amines ou des groupes ammonium ou des hétérocycles azotés quaternaires. Teinture Le CD-PET est un procédé d'échange d'ions. Les cations sodium (Na) de CD-PET sont remplacés par les cations de colorant plus gros, alors que les ions sodium entrent dans le bain de teinture. Ainsi, le PET est chimiquement modifié de telle sorte que les colorants cationiques peuvent former un complexe chimique avec la fibre qui est comme représenté sur la figure: La chimie de production de CD-PET est compliquée. La raison de la difficulté est le caractère acide du Na-SIPA, en particulier en rapport avec la conversion hydrolytique ou glycolytique. Par conséquent, après addition directe de ce sel dans l'étape d'estérification du PET, le diéthylèneglycol (DEG) atteindrait un niveau élevé parce que la formation d'éther est catalysée par un acide. De plus, le caractère acide améliore l'agglomération de TiO2. Il en résulte une difficulté dans le processus de filage et un point de fusion excessivement bas du CD-PET. Low PET PET (LP-PET): Pilling est un problème grave, qui est associé à toutes les fibres synthétiques. Afin de réduire la pilling, des fibres de polyester ayant une résistance inférieure à la normale ont été préparées. Bien que ces fibres forment des pilules dues au frottement, ces pilules peuvent être enlevées par simple brossage étant donné que les fibres ont une résistance inférieure. La fibre de polyester ayant une tendance à la pénétration peut être obtenue par incorporation dans la masse de polymérisation, certaines substances telles que le téréphtalate de baryum, le calcium ou le zinc ou un composé organique de l'antimoine, du chrome ou du fer. Normalement, la résistance à la pénétration a été obtenue en réduisant la résistance à l'abrasion de sorte que la fibre se brise avant la formation de grosses pilules. Modifications de l'hydrophilie Divers procédés de fabrication de fibres de polyester hydrophiles comprennent un filage spécial, une section non circulaire, une structure multicouche, une teinture, un traitement de finition et un traitement au plasma. Certaines des approches de modification importantes sont discutées ci-dessous dans cette section. Un grand nombre d'additifs sont suggérés pour rendre la fibre de polyester hydrophile. ICI ont suggéré l'addition de 5 à 10% en poids de sulfate de sodium sous forme de suspension dans du glycol pendant la polymérisation. La granulométrie du sulfate de sodium doit être inférieure à 3 microns. Un filament de polyester ayant une capacité d'absorption d'humidité d'au moins 1 à 65 HR et 21 ° C et une capacité de rétention d'eau d'au moins 15 est développé par addition d'un polyamide aliphatique soluble dans l'eau au polyester, filage du mélange et lavage de l'amide ajouté avec de l'eau . La propriété de résistance aux salissures des fibres de polyester peut être améliorée par l'addition de perfluorooctane sulfonate de polyéthylèneglycol ou de tétraéthylammonium à la masse fondue avant le filage à l'état fondu. Le polyester creux Au cours des dernières années, une quantité considérable de travaux de recherche ont été réalisés sur la production de fibres de polyester creuses ayant des caisses (trous) micro sur la surface. La fibre de polyester creuse est produite en utilisant des filières spécialement conçues. Normally, four types of spinnerets are used for producing hollow fibres and the spinnerets are shown in the Figure. Plug-in-orifice spinnerets Fig (A): These spinnerets have a solid pin supported in the center of a circular orifice. The polymer is extruded through the annulus. With this spinneret design, it is generally necessary to incorporate a gas-forming additive in the polymer melt. The gas fills the core of the fibre as it emerges from the annulus and prevents collapse until the fibre solidifies. Tube-in-orifice spinnerets Fig (B) : These spinnerets have a hollow needle or tube supported in the centre of the orifice. An inert gas or liquid is injected through the needle to maintain a tubular shape until the fibre solidifies or coagulates. Segment arc spinnerets Fig (C): These spinnerets have C shaped orifices. The polymer solution or melt welds into a tube after extrusion through the C shaped die. The gas required to keep the fibre hollow is drawn in through the gap in the extruded fibre upstream from the weld point. Teijin is marketing such hollow fibre under the trade name Welkey. The mechanism of water absorption and water transport by welkey is schematically shown in the figure. The water absorbing mechanism has three steps. In first step, water attached to the side of fibre enters into the hollow section of the capillary through the penetrating holes. In the next step, water from the penetrating holes goes to both sides of the hollow section by its capillary action. In the final step, total amount of water is absorbed into the hollow section where capillary migration is stopped by balance of tension from both sides Special spinning Drawn polyester filaments are hydro fixed in water in the presence of specified surface-active agents. Hydro fixing place more quickly and a more stable pore structure is obtained. This is reflected in increased moisture uptake and a higher water retention capacity. The fibres retain their hydrophilic properties for a considerable period of time, even with repeated wearing and washing. A salt forming compound is added to the polyester spinning composition for the manufacture of flame resistant and hydrophilic polyester fibres. Plasma treatment The application of the plasma treatment has been demo started for the surface modification of various textiles. A lot of environmental and production problems can be solved by using a non-equilibrium low temperature plasma. The plasma process are dry ones and do not require water or non-aqueous solution. Promising applications of gas discharges plasma for the activation of chemical reactions in liquids have also been reported. Wet ability of polyester has been increased by using oxygen or nitrogen plasma. Plasma - produced polar groups increase the surface free energy of the fibre and decreases the contact angle. The contact angle for water was found to decrease for PET after plasma treatment in oxygen and nitrogen, while the contact angle for cellophane increased. Such low temperature, low pressure plasma treatment is effective in inducing the high consumption of chemical wetting agents normally required chemical processing of textiles. Antibacterialdeodorant polyester fibres Comfort and protection are two very important aspects of textiles today. The increase in the health concern of the consumer has prompted a need for fabrics that can inhibit the growth of bacteria and other microorganisms, which can cause offensive odours, skin irritation, visual spoilage and disfiguring stains making garments unusable with regards to hygiene and aesthetics. Certain allergens can cause allergic reactions and asthma in humans. These microorganisms may develop from the spills of body fluids or medical liquids. Antibacterial protection (additives) inhibits the growth of such bacteria and allergens. At the same time, providing an antibacterial protection, which must not alter fibre spinnability, main properties of the fibre as dye uptake, wear and abrasion resistance and other mechanical properties. Features of the antibacterial fibres: Prevent development of microorganisms, which are responsible for bacterial contamination and unpleasant odours. Should maintain a high level of effectiveness throughout the life of the products. No reduction of antibacterial activity when subjected to dyeing and finishing process. Greater amount of active material exposed on the surface. Compatibility in blends. Withstand robust handling and abrasion without impaired performance. Antibacterial effectiveness is guaranteed with improved hygiene, comfort and coolness augmented by properties of heat regulation and moisture transference, which leave the wearers skin dry and healthy. Production of antibacterial fibres: It is a common practice to give antibacterial properties to synthetic fibres, by adding organic additives combined with fibres in several ways. However, employing organic agents to provide antibacterial activity is to some extent unsatisfactory. This is because of their toxicity, lack of durability and poor resistance to heat. Organic compounds also pose problems in fibre production and present problems when worn next to skin. So, inorganic supports such as special zeolites or ceramic substrates containing Ag or Zn ions have been proposed. Flame retardant (FR) polyester fibres Fire accident generally results in considerable loss of life and property. The majority of fire accidents occur due to burning of textile fibres. Polyester fibre is flammable and can cause considerable injuries due to melting. The blends of polyester with cotton are highly flammable. The flame retardant effect is achieved by the addition of special chemicals. Earlier, this was done by impregnating the finished fabric or by physically mixing an agent to the polymer-for instance during melt spinning. Previously, components containing halogen, and above all bromine, were used. The effect of these substances was based on the halogen radicals interrupting the combustion chain reaction. However, as halogen enables the formation of highly toxic dioxins, the compounds used today contain phosphorus. Bromine compounds are efficient, flame retardant additives but their fastness to light is not always satisfactory. Chlorinated arylalkyl hydrocarbons and bis (2, 4, 6-trichloro phenyl) phthalate have been suggested. A number of FR polyester fibres commercially available include: Dacron 900F, Heim (Toyobo Co) Tetoran Exter (Teijin), Trevia CS and Trevira FR, Toyobo GH, etc. A number of flame retardant additives used during the transesterification reaction in the PET or sometimes mixed with PET chips prior to extraction. The important ones are Ttriphenlyphosphineoxide, 3, 5-dibromo-terephthalate, decabromodiphenyl ether, tribromodiphenyl, phosphinic acid derivative etc. Silk like polyester For centuries silk fabrics are considered to be most elegant and gorgeous textile materials. However, the production of silk fibre could not keep pace with increase in human population, and hence the price of silk is now beyond the reach of most of the people. When synthetic fibres were first developed it was thought that these fibres will be able to substitute silk. However, soon it was realised that these fibres have metallic lustre, papery feel and poor aesthetic value. Substantial amount of research work was carried out to make silk like synthetic fibres, which has resulted in the development of silk-like polyester fabrics. The following factors should be considered in the production of silk like polyester: Fibre cross section to obtain the desired luster. Fine denier filament to obtain the desired feel. Role of cross-section of the fibre Modification of cross-section of the fibre allows engineering of surface properties in yarn and fabric. Many cross-section shapes are available Circular, trilobal, pentalobal, octalobal, hollow, hexagonal, and other irregular shapes. For silk like polyester fibre circular, trilobal, tetralobal, C shape, V shape, and hollow cross-sections have been used. The most popular cross-section for silk like polyester is trilobal, which gives adequate lustre resembling that of silk. The type of cross-section can be coupled with amount of TiO2 in the fibre may result in Milky colours when the fabrics are dyed. Role of average denier of the yarn It plays a primary role in determining the stiffness of the yarn. It is easy to visualise its effect by an analogy, where a thin glass capillary is stiff and brittle, but when it is made in the form of the filament it is pliable. Silk fibres are Very fine in the range 1.2 to 1.3 dtex, and hence necessarily the synthetic fibre used to be in the same range or finer to obtain a feel closer to silk. Finer the single filaments in the yarn, the softer the hand of the resultant fabric. The larger the number of fine filaments in yarn of identical over all titer, and bulkier and denser the fabric hand. Conclusion Polyester: It is a well-known fibre in the synthetic fibre because it has certain desirable properties, the properties are high strength, wash and wear property, good dimensional property, elegant appearance and suitability for blending with cellulosic and protein fibres. But polyesters have some of certain drawbacks such as moisture regain, static electricity, soiling problem, difficult to dyeing, etc. But now many more developments in the polyester processing, ie, hydrophilic polyester, easy dyeable and cationic dyeable polyester, low pilling, antimicrobial polyester, silk like polyester, etc. The advantages of above properties are good comfortable while in wearing, easy to dyeing, so it provides cost reduction and very good appearance of the polyester garments. References 1. E P G Gohl and L D Vilensky: Textile Science, 2nd Edition, CBS Publishers, 1999. 2. S Jayaprakasm and R Gopalakrishnan: Fibre Science and Technology, S S M I T T Publication. 3. V A Shenai, Technology of Textile Processing Textile Fibres, Sevak Publication, 1996. 4. S P Mishra, Text Book of Fibre Science and Technology, New Age International Publishing Co. 5. R M Mittal and S S Trivedi: Chemical Processing of PolyesterCellulosic Blends, ATIRA Publication, 1983. 6. A A Vaidhya: Production of Synthetic Fibres, Prentice Hall of India Publications. 7. W Klein: Man-made Fibre and Their Processing, The Textile Institute Publication. 8. V K Kothari, Progress in Textiles: Science amp Technology Vol 2. 9. Premamoy Ghosh: Fibre Science amp Technology, Tata Mc-Graw Hill Publishing Company. 10. Bernard P Corbman: Textile Fibre to Fabric, Mc Graw-Hill Publication. 11. Vaidhya A A, John Wiley and Sons: Chemical Processing of Man-made Fibres, New York, 1984. 12. Trotman E R and Charis: Dyeing Chemical Technology of Textile Fibre, Graffin amp Company, UK. 13. Holme I: Developments in Chemical Finishing of Textiles and Apparel, Textile Outlook International, March 2001. 14. Holme I, Recent Advances in Chemical Processing, International Conference on Recent Advance in Wet Processing in Textiles, BTRA Publications. 15. Yair Avny and Ludwig Rebenfeld: Chemical Modification of Polyester Fibre, Journal of applied Polymer Science, Vol 32, Issue 3, pp 4009-4025. 16. Martin Bide et al: Modified fibres with Medical and Speciality Application, sprinklinkcontentl042vo14uh874514. 17. Easy Cationic Dyeable Polyester, cyarnproductsfibrefibre-018.html. 18. V K Kothari et al: Journal of Applied Science, Vol 61, Issue 3, pp 401-406. www3.interscience. wileycgi-bin. 19. Properties of Modified Polyester Fibre, Textile Research Journal, trj. sagepubcgicontent. 20. sterlitechproducts. 21. Polyester Fibre amp Method of Production, US Patent No: 4526738, freepatentsonline4526738.html. Note: For detailed version of this article please refer the print version of The Indian Textile Journal June 2009 issue. Aravin Prince P Lecturer JKK Muniraja Polytechnic, Gobi, Tamil Nadu. Email: aravinprincegmail. Mobile: 097900 80302. Engineered Plants Make Potential Precursor to Raw Material for Plastics Researchers report engineering a plant that produces industrially relevant levels of compounds that could potentially be used to make plastics. (Credit: Image courtesy of DOEBrookhaven National Laboratory) In theory, plants could be the ultimate green factories, engineered to pump out the kinds of raw materials we now obtain from petroleum-based chemicals. But in reality, getting plants to accumulate high levels of desired products has been an elusive goal. Now, in a first step toward achieving industrial-scale green production, scientists from the U. S. Department of Energys (DOE) Brookhaven National Laboratory and collaborators at Dow AgroSciences report engineering a plant that produces industrially relevant levels of compounds that could potentially be used to make plastics. The research is reported online in Plant Physiology, and will appear in print in the December issue. Weve engineered a new metabolic pathway in plants for producing a kind of fatty acid that could be used as a source of precursors to chemical building blocks for making plastics such as polyethylene, said Brookhaven biochemist John Shanklin, who led the research. The raw materials for most precursors currently come from petroleum or coal-derived synthetic gas. Our new way of providing a feedstock sourced from fatty acids in plant seeds would be renewable and sustainable indefinitely. Additional technology to efficiently convert the plant fatty acids into chemical building blocks is needed, but our research shows that high levels of the appropriate feedstock can be made in plants. The method builds on Shanklins longstanding interest in fatty acids -- the building blocks for plant oils -- and the enzymes that control their production. Discovery of the genes that code for the enzymes responsible for so called unusual plant oil production encouraged many researchers to explore ways of expressing these genes and producing certain desired oils in various plants. There are plants that naturally produce the desired fatty acids, called omega-7 fatty acids, in their seeds -- for example, cats claw vine and milkweed -- but their yields and growth characteristics are not suitable for commercial production, Shanklin said. Initial attempts to express the relevant genes in more suitable plant species resulted in much lower levels of the desired oils than are produced in plants from which the genes were isolated. This suggests that other metabolic modifications might be necessary to increase the accumulation of the desired plant seed oils, Shanklin said. To overcome the problem of poor accumulation, we performed a series of systematic metabolic engineering experiments to optimize the accumulation of omega-7 fatty acids in transgenic plants, Shanklin said. For these proof-of-principle experiments, the scientists worked with Arabidopsis, a common laboratory plant. Enzymes that make the unusual fatty acids are variants of enzymes called desaturases, which remove specific hydrogen atoms from fatty acid chains to form carbon-carbon double bonds, thus desaturating the fatty acid. First the researchers identified naturally occurring variant desaturases with desired specificities, but they worked poorly when introduced into Arabidopsis. They next engineered a laboratory-derived variant of a natural plant enzyme that worked faster and with greater specificity than the natural enzymes, which increased the accumulation of the desired fatty acid from less than 2 percent to around 14 percent. Though an improvement, that level was still insufficient for industrial-scale production. The scientists then assessed a number of additional modifications to the plants metabolic pathways. For example, they down-regulated genes that compete for the introduced enzymes fatty acid substrate. They also introduced desaturases capable of intercepting substrate that had escaped the first desaturase enzyme as it progressed through the oil-accumulation pathway. In many of these experiments they observed more of the desired product accumulating. Having tested various traits individually, the scientists then combined the most promising traits into a single new plant. The result was an accumulation of the desired omega-7 fatty acid at levels of about 71 percent in the best-engineered line of Arabidopsis. This was much higher than the omega-7 fatty acid levels in milkweed, and equivalent to those seen in cats claw vine. Growth and development of the engineered Arabidopsis plants was unaffected by the genetic modifications and accumulation of omega-7 fatty acid. This proof-of-principle experiment is a successful demonstration of a general strategy for metabolically engineering the sustainable production of omega-7 fatty acids as an industrial feedstock source from plants, Shanklin said. This general approach -- identifying and expressing natural or synthetic enzymes, quantifying incremental improvements resulting from additional geneticmetabolic modifications, and stacking of traits -- may also be fruitful for improving production of a wide range of other unusual fatty acids in plant seeds. This research was funded by the DOE Office Science, and by The Dow Chemical Company and Dow AgroSciences. sciencedailyreleases201011101108140638.htm Solar Industry Soars - Photovoltaics Sees 50 Growth in 2010 DuPont News, April 28, 2010 DuPont expects its photovoltaic sales to grow more than 50 this year as the solar industry experiences strong growth from increased market demand for new installations in Europe, North America and parts of Asia. DuPont now expects its sales into photovoltaics to exceed 1 billion in 2011, which is a year ahead of plan, and has set a new goal to exceed 2 billion in sales by 2014. Our focus on delivering materials innovations that are essential to the photovoltaic industrys future growth is paying off for our customers and for DuPont, said Dave Miller, president, DuPont Electronics amp Communications. We not only have the materials that provide superior performance and reliability to photovoltaic modules, but also the ability to match those products to the specific, individual needs of our customers. Weare aggressively expanding to supply those materials in the volumes required by this high growth industry. In 2009, DuPont sales to the photovoltaic market exceeded 550 million - an increase of more than 25 from the previous year - and outperformed the broader industry which experienced significantly lower growth. DuPonts growth is supported by new innovations that improve module efficiency and lifetime and enable new photovoltaic technologies and applications, which ultimately accelerate the industrys drive to bring costs down in line with other forms of energy. DuPont is a leading material and technology supplier to the photovoltaic (PV) industry, with more than 25 years of experience in PV materials development, applications know-how, manufacturing expertise and global market access. We have seen strong demand that has led us to continue our trend of growing faster than the market due to several successful new product introductions and share gains based on a strong portfolio of materials-based offerings to global photovoltaic cell and module manufacturers, Dave said. We expect our growth momentum to continue because materials innovations are essential to delivering improved efficiency, longer lifetimes, and lower overall system costs to consumers. Save water when dyeing with Fongs technology March 17, 2010 (Hong Kong) In 1992, the United Nations General Assembly designated 22nd March as World Water Day. Every year on that date, people worldwide participate in events and programs to raise public awareness about the critical lack of clean and safe drinking water supplies-and to promote the conservation and development of global water resources. The textile industry consumes huge volume of water everyday and the dyeing industry is undoubtedly one of the industrial sectors that threatens the safety of drinking water. In an effort to save the precious water resource and reduce the environmental impact, Fongs Industries Group along with its member companies, namely Fongs National, THEN, Goller and Fongs Water Technology provide an ecological dyeing solution to reduce the water consumption drastically through their innovative technologies covering the processes from yarn dyeing to piece dyeing and recycling of discharge after dyeing and finishing. 1.Yarn Dyeing Process - Fongs ALLWIN High Temperature Package Dyeing Machine: Yarn dyeing is nothing more than imparting colour to the yarn that will soon be used in knitting or weaving projects, however, it consumes an enormous quantity of water and electricity at the dye houses, which impels the industrial manufacturers to find an environmental solution to revitalize their competitiveness. Fongs ALLWIN High Temperature Package Dyeing Machine offers an unprecedented liquor ratio as low as 1:4 with its integrated design of REV centrifugal pump, heat exchanger and the flow reversing system (patent granted). The newly designed integrated circulating system results in space saving by approx. 25 as compared with conventional machine arrangements. With the capacity ranging from 28 kg to 9129 kg, ALLWIN is equipped with AIR Advanced Intelligent Rinsing System, which shortens the processing time for cotton yarn to 276 minutes, the total water and electricity consumption for dyeing medium to dark shade yarns are reduced to 34lkg and 0.43kWhkg respectively, consequently a significant saving on water and electricity consumption by over 40 and chemical cost by 19 as compared with conventional machines. The ILC Intelligent Levelling Control System monitors the water flow through the package from outside-in to inside-out and vice versa. The ILC improves the levelling of colour through out the whole package thereby reduces yarn loss and increases reproducibility from batch to batch. The outstanding performances of these features save total production cost by 30, making it a premium choice for yarn dyeing facilities everywhere. 2. Discontinuous Dyeing Processing - Overflow and Airflow Dyeing Machines: (1) Fongs Jumboflow High Temperature Dyeing Machine - Despite the new technologies being introduced to the industry over the past 2 decades, the overflow dyeing machines are still being widely used in the knitted fabrics segment nowadays. Fongs National has constantly endeavored on the product development and research to meet the great demand from the customers for eco-friendly dyeing machines with low water and energy consumption to face the rising competition in the textile sector. Recognizing this market demand, Fongs National has launched latest JUMBOFLOW series High Temperature Dyeing machines, which are the most economic hydraulic dyeing equipment ever developed for the industry. It is suitable for the processing of light to heavy weight fabrics with the lowest liquor ratio of 1: 4.5 to run the machine. The JUMBOFLOW series machine is rigged with the Multi Saving Rinsing System (MSR), which allows the dyeing process to carry out cooling and rinsing simultaneously. For those dye houses without recycling of cooling water, MSR reuses the cooling water discharged from the heat exchanger directly and carries it back to the machine for the rinsing purpose. This avoids the direct discharge of the cooling water and hence reduces the water consumption considerably. In order to rinse fabric effectively, the quantity of rinsing water and the rinsing time must be controlled, the AIR Advanced Intelligent Rinsing System is developed for this purpose to improve the rinsing efficiency. With the aid of flowmeter and modulation valve, the flow rate of filling water can be controlled automatically. During the rinsing process, the conductivity of the electrolytes in the dye liquor (in ppm) is actively monitored. The rinsing process continues until it arrives at a particular TDS (total dissolved solids) value (standard before soaping: 2000ppm 2gL Na2SO4). As the usage of the alkaline is directly proportional to the TDS value, and the TDS value is also proportional to the usage of acetic acid, according to the Equivalent Weight Principle, it does not only guarantee the performance of neutralization by acetic acid, but also save water consumption and process time by approximately 40 and 33 respectively as compared of these with conventional dyeing machines. (2) THEN-AIRFLOW Dyeing Machine - The researchers at THEN had already predicted the situation of increasing scarcity of usable water as far back as the 1970s, when they began developing a jet dyeing system that would dramatically save water. The basic idea was to use dye liquor for the sole purpose of dyeing the fabric, and not to waste copious amounts of it to simply move the fabric through the kier. They achieved this by harnessing the air inside the dyeing vessel and use it as a jet stream to propel the fabric through the dyeing nozzle. Thus, the THEN-AIRFLOW concept was born, and it became an immediate success initially in Europe and America in the 80s and 90s of the last century. Today, the global success story of the THEN-AIRFLOW continues, and it has become the most popular brand of exhaust dyeing machines even in China. As air is used to move the fabric through the machine, the liquor ratio required in THEN-AIRFLOW machines is typically 30 to 50 lower than in hydraulic round vessel dyeing machines. For 100 cotton fabrics, it is typically 1:3.75 at full loading, and even at half loading, 1:4.6 is achievable, as the THEN-AIRFLOW machine works without a liquor bath in the bottom of the kier. The significantly lower amount of water in circulation also means considerably lower requirements of auxiliary chemicals and, in reactive dyeing, particularly of Glaubers salt. Dyeing of most synthetic fabrics can be effected without the use of anti-foaming agents. Over and above this, the lower liquor ratio also offers a higher efficiency of dyestuffs. In THEN-AIRFLOW technology, the dyeing point is in the nozzle. By injecting the dyeing liquor into the airstream transporting the fabric through the nozzle, an aerosol mist is created that offers dyestuff penetration far beyond the reach of any dye bath. In reactive dyeing, customers achieve annual savings of around 5 on their dyestuffs bill. The low liquor ratio and low overall water consumption also mean that total cycle times are greatly reduced. For a 100 cotton fabric in a dark red (maroon) shade, the total process time including loading, pre-bleaching, reactive dyeing, washing-off, rinsing and unloading is 278 min. This means a theoretical batch rate of 5.2 per day and thus a massive improvement in productivity over old technology. The overall water consumption for this fabric from loading to unloading is 39 l per kg. In pure bleaching operations, THEN-AIRFLOW machines achieve water consumption figures of 8 l per kg for RFD (ready-for-dyeing) and 9 l per kg for optical white. THEN-AIRFLOW machines are available as high-temperature models or as atmospheric machines. There are presently more than 2,500 units of late design in operation worldwide, offering their respective owners economic and ecological superiority on both woven as well as knitted fabrics across all natural and man-made fibre contents. THEN-AIRFLOW technology is unrivalled as the most economical exhaust dyeing technology and the most ecologically sound solution in the industry: it offers the smallest water footprint of any exhaust technology available today. 3. Continuous Wet Processing - Goller Colora Dyeing Range - Goller has been a leading manufacturer of continuous wet finishing lines for woven and knitted fabrics, for a long time. Compared to discontinuous processing machines, it is evidenced that all Goller products have a lower consumption of water, steam and chemicals. This is also valid for the dyeing process of wovens on the pad steam range Colora as well as for our washing range Sintensa for knits after CPB dyeing. In order to protect the environment and to save previous resources, we are trying to reduce the water consumption as far as possible. Especially in the field of intensive RampD we made a lot of progress. All ranges of Goller are equipped with a state-of the-art computer program, which controls and regulates the whole setting of the machine. For Goller it is self understanding that also the liquor content in the different washing compartment is reduced to the absolute necessary minimum. This is important when the production line has to be emptied and refilled when changing the colour which has to be dyed when changing the colour for dyeing process. This means that in the Effecta compartments for woven fabrics the bottom guide rollers are submerged only by 23 of its diameter. Besides the reduced filling quantity it also optimises the usage of the water. Between guide roller and fabric a hydrostatic pressure is created which increases the crossflow through the fabric and increases thus the washing efficiency. In the Sintensa compartments for knitted fabrics where the fabric is carried through the compartment, this crossflow is created by mechanical means. A driven rotor with a special surface shape pushes the washing liquor through the fabric. Another important feature to save water is the consequent counterflow inside the washing compartments. Through meandering cascades it is made sure that no dead zones exist and no accumulation of impurities or concentration differences occur. Depending on the dyeing process this counterflow is also applied between different compartments. With the consequent reduction of process water the side effects are obvious: Less energy is needed to heat the process water which in a dyeing range requires up to 98C. Thus costly energy is saved at the same time, but also less water to the drain means less treatment costs for the effluents. Huge potentials for savings exist nowadays in the continuous finishing of knits, which is not so common yet. Goller is supporting especially these customers with technological and technical support to achieve the potential savings for the benefit of the customers but last not least for the environment. 4. Reduce Discharge from the Start till the End - Fongs Water Technologys Water Reuse System: Despite all the innovative ecological dyeing systems being provided, water consumption in dyeing process is still large. It would be best to treat discharge can then be used back into the dyeing process, lowers new fresh water intake and the discharge volume. Since the water used in textile manufacturing must be non-staining, water to be reused must be low in turbidity, colour, iron, and manganese. Hardness may cause curds to deposit on textiles and causes problems in processes that use soap. As such water to be reused must first go through a desalination process that reduces its hardness and impurities. Reverse osmosis, an advanced treatment process materialised through modern-day membrane technology, is most commonly used in water reuse to physically remove salt and impurities from wastewater. Water Reuse systems provided by Fongs Water Technology has unique characteristics and advantages in water impurities removal. Membranes, used with the combination of other traditional filtering processes, can efficiently retain microscopic elements, and lowers the content of organic materials, colour, water hardness and other undesirable substances in wastewater. As the membrane technology matures, cost of membrane element has decreased while the performance of such increased. Treated water can readily be reused in production, reducing water costs, discharge costs, hence reducing operating costs - Installing a water reuse unit is definitely not a plug-n-play business, and need a tailor-made solution to ensure optimal performance. The implementation of water reuse system is in 3 phases: 1.Preliminary water test: Around 2 to 3 Litres of water sample is collected for water quality analysis. A few characteristics of the effluent are evaluated, including conductivity, total dissolved solids (TDS), pH, Colour, Turbidity, and Chemical Oxygen Demand (COD). 2.Pilot Test: With the pilot test unit running in clients site for around one month, it should cater most of the challenges that the full system may encounter, and engineers collect the information needed for fine-tuning the proposed solution hence provide a better final implementation for the customers. 3.Full implementation: With the water sample analysis and pilot test carried out, it should now pretty confident that the final solution will operate in an effective and efficient manner. 5.Gearing Up for Future Challenge: The issue of water and energy savings is currently a hot topic worldwide, the discussion has been also very much in vogue in textile industry. The fierce market competition nowadays has resulted in a lower profit margin in the dyeing and finishing industry. To stay competitive, the manufacturers have become much more environmentally conscious than ever and started to apply the innovative product technology to reduce their water and energy consumption, thus, help to slow down climate change. Looking ahead, Fongs Industries Group will uphold its commitment to serve the industry with the best environmental solution covering the quality products and cutting-edge technology to help the industrial manufacturers to achieve the balance between the operating target and environmental stewardship. Fongs Industries Group Electron beam facility to treat textile polluted water April 03, 2009 (Sri Lanka) The textile and agreement industry in Sri Lanka has always been in the forefront of eco-friendly and sustainable methods of manufacturing. Many of their companies like Brandix and MAS holdings have received innumerable awards for creating clothing with eco-friendly processes. Taking the process further, the Atomic Energy Commission in close cooperation with the Central Environmental Authority is conducting a feasibility study on treating the deadly chemical water released by the textile dyeing units with means of an Electron Beam Facility. The International Atomic Energy Agency in Vienna has agreed to provide technical assistance for technology transfer and an expert, Dr. Bumsoo Han from Korea is in Sri Lanka to conduct a feasibility study of the project and to create awareness among industrialists about this technology. Dr. Bumsoo Han was earlier associated with a pilot plant for treating 1,000m3day of dyeing wastewater with e-beam which had been constructed and under operation since 1998 in Daegu, Korea together with the biological treatment facility. The Electron Beam facility basically treats the polluted water with help of e-beam and helps treat water with increased reliability and helps in decolorizing and destructive oxidation of organic impurities in wastewater with reduction in treatment time and an increase in flow rate limit by 30-40 percent. PETG. PET modified by copolymerization is available In some cases, the modified properties of copolymer are more desirable for a particular application. For example, cyclohexane dimethanol (CHDM) can be added to the polymer backbone in place of ethylene glycol. Since this building block is much larger (6 additional carbon atoms) than the ethylene glycol unit it replaces, it does not fit in with the neighbouring chains the way an ethylene glycol unit would. This interferes with crystallization and lowers the polymers melting temperature. Such PET is generally known as PETG (EastmanChemical and SKchemicals are practically the only two manufacturers). Another common modifier is isophthalic acid (IPA), replacing some of the 1,4-(para-) linked terephthalate units. The 1,2-(ortho-) or 1,3-(meta-) linkage produces an angle in the chain, which also disturbs crystallinity. This copolymer is mainly used for bottle production . The niche more interesting price is the kind with CHDM . CHDM is very expensive both for price and quantity. Some producers are trying to produce PETG without CHDM. replacing it with inexpensive glycol to dramatically end price reduce. Mais. there are not negligible problems of performance. Technology - Polyestertime Teijin Unveils Futuristic Electric Concept Car The Teijin Group unveiled on March 30 a super-lightweight electric concept car made with proprietary materials and technologies including carbon fiber composites, polycarbonate resins and bio-derived polyester. Weighing only 437 kg, less than half that of conventional electric vehicles, the PUPA EV (as in pupa electric vehicle, a reference to metamorphosis) embodies Teijins vision of what a vehicle will look like on the market in five to ten years. The vehicle is being exhibited in the Teijin Mirai Studio, a showroom located in the same building as Teijins headquarters in Tokyo that presents the groups leading-edge materials and technologies. Capable of 60 kmhour and a cruising range of 100 km, the PUPA EV offers the functionality and structural integrity of a practical automobile. As a symbolic electric concept car, it is infused with proprietary advanced technologies: Weight Reduction - Body incorporating a core structure made of carbon fiber composite material. - Windows made of polycarbonate resin with a heat absorbing function weighing only half as much as glass. - Modularized parts made with single-piece molding, etc. reducing total parts to about 20. Biotechnology - Interior items (seats, floor mats, etc.) made with bio-derived polyester. Reduced Environmental Burden - Metal-toned TEFLEX PET film, used as an alternative to chrome plating. - Low-noise tire cord made with TEONEX polyethylene naphthalate (PEN) fiber. Electronics - Multi-device communication using CELL FORM two-dimensional communication sheet. Going forward, Teijin will use its innovative concept car as a marketing tool to showcase the groups environmentally responsive technologies and customer-oriented solutions. The Teijin Group is cultivating markets and developing technologies in four strategic sectors: automobiles and aircraft, information and electronics, healthcare, and environment and energy. The Teijin Technology Innovation Center and the Teijin Composites Innovation Center were established in 2008 to pursue joint-development initiatives with customers. Along with the Plastics Technical Center, the facilities have enabled the Teijin Group to enhance its customer lab program of solution-oriented collaboration with customers. The Mobility Business Project, a department overseen directly by the CEO, was established in April 2009 to support business expansion in the automobiles and aircraft sectors, focusing on the development of materials and technologies for lightweight, hybrid and electric vehicle designs. Spring, a leading global manufacturer of mechanical springs since 1918, has leaped past its competition with a totally new technology - LeeP plastic composite springs molded from SABIC Innovative Plastics Ultem resin. Among the first springs ever made with high-performance, engineered plastic, LeeP compression springs provide critical advantages over traditional metal alloy springs, enabling this valued SABIC Innovative Plastics customer to expand its business for greater potential success. SABIC Innovative Plastics provided a range of specialized services for this project, including predictive analysis, material characterization and mold optimization, clearly illustrating how the company helps its customers succeed through its 75-years of materials technologies expertise and innovation. Springs, Made by Lee Springs with SABIC Innovative Plastics Ultem Resin Ultem resin gives the new springs a broad range of high performance properties including high strength-to-weight ratio, no magnetic interference, high corrosion resistance, and dielectric insulation for non-conductive applications. We specifically selected Ultem resin for LeeP because of its superior track record of success in the most demanding application areas vs. competitive materials, said Al Mangels, Lee Spring president. The resin exceeded our expectations at every step. Its a truly exceptional product that, due to its tougher-than-tough balance of high-performance properties, performs better than any other thermoplastic. When all was said and done, we knew we had set a new industry standard, which, after all, was the goal. Thermoplastics have rarely before been used in high-performance springs, so we were venturing into virtually uncharted territory with Lee Spring, said Shawn Lee, product marketing manager, SABIC Innovative Plastics. But through our strong chemical and materials expertise, and our technical customer support - ranging from initial calculations and predictive analyses to benchmarking how Ultem resin would perform in the new line of springs - we delivered another winner. Equally important, SABIC Innovative Plastics provided a valued customer a major competitive advantage and an opportunity to capture greater market share, which is what we work toward for all of our customers. Ultem Resin Opens New Opportunities Lee Spring saw an untapped opportunity to expand its market reach with high-performance thermoplastic springs that approach the strength of metal without certain drawbacks. According to Steve Kempf, CEO of Lee Spring, Our customers wish list includes strength, heat stability, corrosion resistance, non-magnetic properties, insulation, inertness, low flame toxicity and recyclability. What led us to Ultem resin was its excellent all-around performance combined with great strength. Ultem resin satisfies the full gamut of customer requirements in a single offering. For example, in marine applications, LeeP springs made with Ultem resin offer longer life due to resistance to salt water. For the medical device industry, LeeP springs avoid the cost of shielding, which is necessary for metal springs that can interfere with diagnostic imaging. Other market sectors that may benefit from the new springs are: medical products and processing equipment, pharmaceutical delivery devices, food processing and packaging equipment, aerospace products, electronics and electrical equipment, water purification systems and automotive interiors. LeeP Plastic Composite Springs are stocked in a variety of standard sizes, each available in a rainbow of strengths formulated from Ultem resin containing various levels of fiber reinforcement. Robust Performance and Much More Spring rate (a function of shear modulus), cycle life (resistance to fatigue) and creep resistance are key performance measures for these compression springs. Ultem resin not only provides excellent results for these criteria, but also delivers other key properties: Mechanical stability up to 170C, allowing for use in a wide range of environments. High strength-to-weight ratio: Ultem resin is the highest strength amorphous resin in the market. High corrosion resistance and generally compatible with many chemicals including strong acids, weak bases, aromatics, and ketones. Non-magnetic to avoid interference with imaging and other Ferro-sensitive technologies. Dielectric insulating material suitable for non-conductive applications. Inert non-contaminating plastic composite protects product purity. Low flammability and toxicity ensure environmental safety. Recyclable and compliant with most global regulations including RoHS and REACH. Posted Apr. 2010 IdentiPol QA enhancements to be launched at PDM 2010 Keyworth, March 2010. Triton Technology Limited, the company behind the identiPol QA, will be presenting the units latest enhancements at PDM 2010 (Telford, 18-20 May 2010). Incorporating the latest version of its software, the identiPol QA, which is used by recyclers, extruders and moulders for the quality assurance testing of thermoplastics, can now be used to check the identity of unknown polymers. The identiPol QAs user-interface has also been improved based on customer feedback. Triton Technology can be found at stand J16 in Hall 2. The ability of the latest version of the identiPol QA software to identify polymers is based upon the enhanced methodology integrated within it, as John Duncan, managing director at Triton Technology explains: It is now possible for the system to assist in the identification of unknown polymers, which it does based upon their thermo-mechanical properties, for example melting point, as measured by theinstrument. We will continue to develop and improve the identification algorithms used by the identiPol to further extend the number of materials that can be reliably identified. Beyond its use for material identification purposes, the identiPol QA provides users with rapid, easy-to-interpret information on the quality and expected performance of incoming raw material. The presentation of this information has been further improved following revision of the user-interface based on customer feedback. Ultimately we want to help moulders reduce the risk of incorrect or poor material being used in their machinery or the substandard performance of the final product. By using an identiPol system, moulders can expect to see reductions in wastage as well as improvements in cost effectiveness and efficiency, confirms Duncan. Established in 1997, Triton Technology Limited is a leading designer and manufacturer of Dynamic Mechanical Analysis (DMA, DMTA) and Dielectric Thermal Analysis (DEA, DETA) equipment plus wide temperature range ovens, and is well known in the field of material science for its visionary designs and depth of in-house knowledge. A fully - accredited ISO 9001 company, Triton employs twelve people at its head office in Keyworth, Nottinghamshire, and has a network of distributors and agents to sell and support its products worldwide. Further information can be found at tritont. For marketing enquiries please contact Kerry Bodin on 01159 375555 or email: Kerry. bodintriton-technology. co. uk For press enquiries please contact Andrew Wilkins on 01353 663350 or email: triton. pressbtconnect New identification functions and an improved user-interface are amongst the enhancements of the identiPol QA to be introduced at PDM 2010. (Photo available as high resolution jpeg as an attachment to this mail or from triton. pressbtconnect) Triton-UK-2010-02 Atlas Copco first to offer certified net zero energy consumption compressors - the Carbon Zero Range Antwerp, Belgium, June 30, 2009: Atlas Copcos Oil-free Air division has announced that the companys ZR series of water-cooled oil-free air compressors with built-in energy recovery systems is the first in the world to be TV certified for net zero energy consumption at specific design conditions. Release date: Thursday, 27 August 2009 It has been proven that 100 of the electrical power input could be recovered in the form of hot water. With these Carbon Zero compressors, industries using a great deal of hot water and steam such as food amp beverage, dairies, pulp amp paper, pharmaceuticals, chemicals and petrochemicals, power plants, clean rooms and textiles can dramatically cut down on their energy bill. Energy savings in compressed air systems are very important as energy consumption typically represents over 80 of a compressors lifecycle cost. While compressed air systems on average account for about 10 of industrial electricity consumption, it can be as high as 40 of a plants electricity bill. For this reason, Atlas Copco has been innovating for energy-efficient compressed air solutions for many years. The new certification is yet another milestone in Atlas Copcos history of innovation. We are very pleased to offer our customers a compressed air solution which can recover 100 of the input energy, says Stephan Kuhn, President of Atlas Copcos Compressor Technique business area. Today our customers face stringent targets to reduce carbon dioxide emissions. With the Carbon Zero compressor, customers can get compressed air virtually for free, which has significant impact towards preserving the environment and also on their bottom line. The independent Technische berwachungs-Verein (German Technical Monitoring Association, or TV) earlier this year supervised the type-testing of Atlas Copcos ZR 55-750 water-cooled oil-free screw compressors, equipped with built-in energy recovery systems. The testing process involved real-time measurement of the electrical power input and the output power as hot water. The two measurements were then compared. It was proven that under the specific design conditions of 40C and 70 relative humidity, 100 of the input electrical power could be recovered. While the Carbon Zero compressor compresses air, all the input electrical energy is converted into heat. This heat appears at different compressor components. The challenge is really to pick up this heat from all the components which are the compression elements, the oil cooler, intercooler and aftercooler. The built-in energy recovery system circulates cooling water through all these components and as a result of the heat transfer, yields hot water at up to 90C. This hot water can find several applications in the industry. Most industries can make use of hot water for space heating, showers and other such applications. However the industries that will benefit the most are those that have a continuous need for hot water and steam in their processes. Typical process hot water and steam users include food amp milk processing plants (scalding, cleaning, sterilization, melting), pulp amp paper industry (in the digester amp evaporators, and in bleaching, pulping ), textile industry (dyeing, stabilization of manmade fibers), pharmaceutical industry (fermentation and sterilization), refineries, chemical and petrochemical plants (steam distillation, enhanced recovery, stripping, heat tracing), power plants (electricity generation), clean rooms (humidification). The hot water or steam is normally generated using industrial boilers which consume electricity or fuels like heating oil or natural gas. When using hot water from the compressor, either directly or as pre-heated boiler feed water, the consumption of fuel can be either dramatically reduced or be eliminated. This results in significant energy savings. Chris Lybaert, President of Atlas Copcos Oil-free Air Division says In summary, the Carbon Zero compressor offers our customers a double-win with enormous environmental benefits along with increased profitability. Atlas Copco may be required to disclose the information provided herein pursuant to the Securities Markets Act. For further information please contact: Elaine Tibiletti, Communications Manager, Atlas Copco Prime Energy Tel: 1 (210) 413 7988 E-mail: elaine. tibilettius. atlascopco FOOTNOTE TO EDITORS: This release, plus a full press kit and high-resolution photographs and diagrams, is available on the Atlas Copco website: carbonzerocompressors Atlas Copco is a world leading provider of industrial productivity solutions. The products and services range from compressed air and gas equipment, generators, construction and mining equipment, industrial tools and assembly systems, to related aftermarket and rental. In close cooperation with customers and business partners, and with 136 years of experience, Atlas Copco innovates for superior productivity. Headquartered in Stockholm, Sweden, the Groups global reach spans more than 160 markets. In 2008, Atlas Copco had 34 000 employees and revenues of BSEK 74 (BEUR 7.7). Learn more at atlascopco. Oil-free Air is a division within Atlas Copcos Compressor Technique business area. It develops, manufactures, and markets oil-free air compressors for all kind of industries worldwide where the air quality is vital, and oil-injected compressors for less critical applications. The division focuses on air optimization systems and quality air solutions to further improve customers productivity. The divisional headquarters and main production center are located in Antwerp, Belgium Magnetic technology revolutionizes refrigeration Change in refrigeration technology could cut energy consumption by up to 50 percent BASF researchers cooperate with Delta Electronics, Inc. BASF and Delta Electronics, Inc. want to use environmentally friendly magnetocaloric technology to develop new cooling systems and explore the opportunities of magnetocaloric power generation. The cooperation partners are working on materials and prototypes for cooling systems and power generators intended to replace conventional compressor technology in refrigerators and air conditioning systems. Our experts in material and process development work closely with scientists in fundamental research at internationally renowned universities such as the TU Delft and our innovative industrial partner, Delta Electronics, said Professor Rainer Diercks, President Chemicals Research amp Engineering at BASF. BASF has already started the scale-up for the production of special, economically feasible materials that already show a magnetocaloric effect at relatively low temperatures and thus offer a broad range of applications. This is a major contribution to the success of this project. We are delighted to team up with BASF, said Deltas Vice Chairman and Chief Executive Officer Yancey Hai. Our mutual development project with BASF is in line with our mission to provide innovative, clean and efficient energy solutions for a better tomorrow. We will generate new business opportunities with our competency as a system integrator of efficient energy technologies. Cooling systems based on the magnetocaloric effect have the potential of significantly reducing energy consumption. The magnetic technology does away with gaseous refrigerants and is therefore quieter and causes less vibration than conventional compressor type refrigerators. It is also compact enough to suit all conventional household refrigerators and commercial applications such as computer cooling systems or air conditioners. As long ago as 1880, the German physicist Emil Warburg observed that ferromagnetic materials heat up when introduced into a magnetic field and cool down again when removed. Magnetic field based cooling systems have existed since the 1930s but so far only in laboratories. Today, new materials in magnetic refrigeration technology and more effective permanent magnets allow for a much larger effect. Already at normal ambient temperatures, even weak magnetic fields can generate particularly large temperature differences that can be utilized for cooling by means of a heat exchange system. As a specialist in innovative solutions for energy management, Delta wants to develop small coolers for household appliances. Were all ready to go. What we need now are prototypes for cooling systems to demonstrate the energy-saving potential in everyday use, said Dr. Thomas Weber, Managing Director of BASF Future Business GmbH, which coordinates material optimization, product design and production processes. Initial estimates by material researchers suggest that energy consumption can be cut by up to 50 percent by using a unit with magnetic refrigerating technology instead of a conventional refrigerator. Commercially viable applications for magnetocaloric cooling are only possible if there is an abundant supply of affordable raw materials. BASF is working, for example, on chemically stable manganese-iron compounds. These compounds are characterized by low-volume expansion and a particularly large magnetocaloric effect. At the same time, these materials are cheaper to produce than those based on the metal gadolinium and its salts that have been used to date. The production of larger amounts for industrial applications is currently being tested. One of the main research goals in the area of magnetocalorics is to save energy in numerous potential applications ranging from cryoproduction in the process industry, through automotive air conditioners, miniaturized cooling systems for electronic components and refrigerators. Refrigerators for example account for about one-fifth of total domestic energy consumption. Release date: July 22, 2009 Color Control Directly at the Plastic Pellets A color control system equipped with a high-precision spectral line camera permits for the first time ever the on-line color control directly at the plastic pellets. With this innovative technology, color measurement takes only a few minutes and the results are available for color correction andor quality documentation virtually in real time. At the Coperion Open House, which took place at the end of January 2009, the ROC ColorControl system showed, in conjunction with a small compounding line (in the background), how fast, easy and reliable color measurement can be and how quickly color correction is carried out. Photo: Coperion, StuttgartGermany At the Coperion Open House, which took place at the end of January 2009, the ROC ColorControl system showed, in conjunction with a small compounding line (in the background), how fast, easy and reliable color measurement can be and how quickly color correction is carried out. Photo: Coperion, StuttgartGermany Designated ROC ColorControl, this on-line color control system is now offered by Coperion GmbH, StuttgartGermany, as optional ancillary equipment for its compounding extruders. Coperion has signed a distributor agreement with the developer of this ROC ColorControl system, the company of ROC Rapid Optical Control GmbH, Mnster near DieburgGermany. Thus Coperion has further augmented its position in the market as a supplier of complete customized systems. The ROC ColorControl system offers the compounder numerous advantages: It decisively shortens the time needed for initial color adjustment and correction, as the timeconsuming injection moulding of test pieces can now be waived. It ensures virtually immediate compliance with compound color specifications when changing over production from one product andor color to another. The fast scanning time and negligible costs permit for the first time ever virtually continual color monitoring and documentation. It extends the productivity of the extruder and considerably reduces manufacturing times and costs, especially when processing relatively small batches. For color measurement, the ROC ColorControl system requires a sample quantity of pellets of approximately 35 ml, which are then spread out evenly on a temperature controlled vibrating table. The results of the measurement, which is performed by the spectral line camera in less than 3 minutes, are evaluated by means of software specially developed by ROC for this application. The special feature of the system lies in its ability to make allowance for any shadows, contaminants andor stress-whitened zones along chopped edges. The ROC ColorControl system works particularly economically with the fully automatic ROC ContiSampling system, which conveys the sample pellets from the downstream side of the pelletizer to the measuring system in a self-filling and self-emptying transport container. Using a logistic conveying system, it is possible to link as many as six compounding lines with an ROC ColorControl system. As standard, the compounding lines are sampled one after the other. If required, several samples can be taken from the same line in succession, e. g. during start-up. The optional color correcting unit ROC ColorDosage permits particularly fast and easy color adaptation during the compounding process. This unit consists of four to six weigh feeders per extrusion line for different monopigment masterbatches. The smallest metered amounts suffice for color correction. The color changes obtained can already be measured after only a few minutes and are displayed graphically. 63 Years of UV Exposure in 1 Year Atlas Material Testing Technology LLC Release date: April 22, 2009 April 22, 2009, Chicago, IL - Atlas Material Testing Technology is excited to introduce the latest technology for ultra-accelerated exposure testing. This new outdoor testing device can provide approximately 63 years of South Florida UV radiation exposure in a single year. Atlas developed this new solar concentrator technology in partnership with the National Renewable Energy Laboratory (NREL) and the Russian Institute of Laser Optical Technology (ILOT) under a U. S. Department of Energy (DOE) program. Similar in concept to Atlas moderately accelerated EMMA technology, the ultra-accelerated device tracks the sun while concentrating reflected sunlight on test specimens mounted in a target area. However, the new patented mirror system used in the ultra-accelerated concentrator has very high reflectance in the UV and near visible wave length ranges while attenuating reflectance in the longer wavelength visible and IR portions of the solar spectrum. This technology allows for very high concentrations of UV energy without excessive heating of test samples. Building high irradiance solar concentrators or laboratory solar simulators for durability testing appears straightforward however, such devices at ultra-high irradiances typically cause overheating of test samples resulting in unnatural material changes compared to the changes in the end use environment. Atlas new technology, on the other hand, simultaneously achieves three requirements critical for ultra accelerated exposure testing: 1. Exposes many different types of materials to ultra-high UV irradiances 2. Maintains high fidelity to the natural solar UV spectrum 3. Maintains specimens at acceptable exposure temperatures Using multiple focusing mirrors arranged on the curve of a 10 meter sphere, the UV energy may be variably concentrated on a target area approximately 10cm X 10cm. Custom mounting and cooling can be added depending upon specific material exposure requirements. Optically the mirror system has a direct normal 1001 concentration factor. MaterialsProducts that represent good candidates for testing are: o Materials that require a long service life o Transparent and glazing materials o Small solar PV cells or material used in these cells o Coatings applied to metal panels o Materials that perform well in EMMA or EMMAQUA exposure testing Atlas Material Testing Technology LLC Phone: 1-773-327-4520 Fax: 1-773-327-5787 Email: infoatlas-mts Atlas Material Testing Technology GmbH Phone: 49-6051-707140 Fax: 49-6051-707149 Email: infoatlasmtt. de Saturday, 17 January 2009 Chinas yarn dyeing technology achieves a major breakthrough Recently, Science and Technology Department of the China Textile Industry Association has organized the project appraisal meeting for the adoption of cold pileup dyeing method of yarn and thread in Changzhou Jun Hong Dyeing and Finishing Co. Ltd. in Jiangsu province. This innovative yarn dyeing technology has aroused widespread concern in the industry. The adoption of cold pileup dyeing yarn method, self-developed by Changzhou Jun Hong Dyeing and Finishing Co. Ltd. can reduce water consumption from 120-160 tons by traditional method to 13 ton for dying one ton of yarn, saving 90 percent of water. The project has obvious effects of energy - efficiency and emission-reduction it also has good economic and social benefits as well as broad marketing prospects, for it is in line with the trend of social development. Results of the project have reached advanced international level. Production costs of current equipment, including water, electricity, dyes, wages and so on, are about 8500 Yuan ton in general, while production costs of these facilities are about 3,500 Yuan ton. Equipment investment of such technology is about 15 million Yuan, it could dye 15 25 tons of yarn, based on 16 hours of normal driving hours per day, while investment of traditional equipment would be above 50 million Yuan. It is easy to operate. When using this device, you only need to control the concentration of dye fluid and driving speed. 14 January 2009 Control system is ideal for smaller extruders A new, low-cost, modular polymer melt control system, OptTrol from Dynisco gives users the ability to control pressure and temperature precisely on most extrusion lines. The company says that it offers adaptive, autotuned temperature, pressure and speed control as well as differential control and process-variable trending from a user-friendly colour touch-screen operator interface. The system can be used on new extruders or retrofitted to provide advanced control features on existing equipment. The system is claimed to be ideal for smaller extruders. Dynisco has long been known for its sensing and single-loop technology, comments Mike Davis, product manager. Now, with the introduction of OptTrol we can also give customers total polymer melt control in a simple, affordable, expandable package that works as a system with Dynisco sensors and instruments. OptTrol allows users to achieve a complete solution and optimal control from their entire extrusion line. A system can be configured with as few as eight zones and can be expanded in convenient increments of eight zones to a maximum of 40 zones of control. This building block approach saves time and money, sats the company. The temperature card was developed with single-screw, twin-screw, co-extrusion or blow-film extrusion applications in mind. Fully automatic adaptive tuning (as well as conventional tuning) is provided. To boost productivity and extend equipment life, the OptTrol system includes an automated heat start-up, which requires no operator intervention. Direct crystallization saves energy Direct crystallization allows significant energy savings in the production of PET and crystallisable polyester. The CC-PET process developed by Rieter Automatik and Buhler combines this benefit with the robustness and flexibility expected of stateof-the-art production processes and supplies a dust-free product of stable quality. The production of different types of polyester today is a large-scale industry with tried and true, cost-effective manufacturing methods. Despite the trend toward plants offering economies of scale and the fine-tuning of all process stages, the largest potential for further cost reductions lies in the interfaces between the different process stages. One such interface exists after the pelleting stage, which links melt-phase polymerization with downstream solid-state polycondensation. This interface can be optimized by direct combination of the pelleting crystallization. This so-called direct crystallization is an eminently important development enabling energy consumption to be reduced during polyester production. It allows the energy contained in the polyester melt to be utilized for the crystallization stage. This direct crystallization eliminates the need for intermediate storage. This offers cost advantages, but at the same time increases the complexity of the overall process because previously independent operations are now combined. Water-cooled The direct crystallization process starts at the extrusion die, where the melt is formed into several strands of uniform thickness. Depending on the specific pelleting process applied, the strands will be maintained over a short distance and are partially cooled with water before being cut into pellets. The cooling water is maintained at a temperature of 60 to 95 C. It is preferably separated from the pellets by a centrifugal dryer, with the pellets then being transferred to a crystallizer. In the crystallizer, the pellets are agitated by a fluidizing gas stream in order to prevent agglomeration. For higher throughput rate, several pelleting systems may converge in a single crystallizer. The total contact time with the water is typically in the range of 1 to 4 seconds. As an option, a screen may be used for separating oversize pellets, dust, and fines. The main goal of the direct crystallization process is to transfer an optimal amount of energy from the melting process to the crystallization process. This optimum is not determined only by the reduction of energy consumption, but also by additional factors such as process stability, product quality, and operating flexibility. Temperature fluctuations can be balanced by supplying a controlled amount of heat to the fluidizing gas stream. This low loss of energy saved ensures permanently constant process conditions and thus a homogeneous product quality. At the same time, the process can absorb a certain portion of cold material from the outside. If the melt-phase polymerization process is temporarily operated independently of the solid-stage treatment, this material can be returned later on to the process a significant advantage in plants which are sometimes operated for several years without interruption. Joint development Rieter Automatik and Bhler AG, the market leaders in the supply of plants for manufacturing PET pellets and in the field of solid-state polycondensation, have jointly developed the Combi-Crystal-PET (CC-PET) process. It optimizes direct crystallization for maximum energy savings and process stability. This process can be used both for underwater strand granulation (USG, cylindrical pellets) and for underwater granulation (UWG, spherical pellets). Both granulation systems can be linked directly with the Buhler Q-crystallizer. A typical application of the CC-PET process is the production of PET with a low to average comonomer degree and an intrinsic viscosity between 0.55 and 0.9 dlg. With lower viscosities and higher comonomer degrees, an intermediate conditioning stage is provided in the cooling fluid. An additional benefit of the CC-PET process is that pellets with a higher surface roughness can be manufactured, which further reduces the stickiness of the pellets. The surface roughness is achieved without the dust generation otherwise typical of crystallization processes applying mechanical agitation. Quite the contrary is true: The CC-PET process incorporates an integrated dedusting stage. Uzwil, October 29, 2008 DOPE DYED POLYESTER SPINNING
No comments:
Post a Comment